Inhibition of neutrophil function following exposure to the Aspergillus fumigatus toxin fumagillin.
نویسندگان
چکیده
The filamentous fungus Aspergillus fumigatus produces a variety of enzymes and toxins that may facilitate fungal colonization of tissue and evasion of the host immune response. One such toxin, fumagillin, was investigated for its ability to inhibit the action of neutrophils, which are a central component of the innate immune response to microbial infection. Neutrophils exposed to 2 microg fumagillin ml(-1) for 25 min showed a significantly reduced ability to kill yeast cells (P<0.02), to phagocytose conidia of A. fumigatus (P<0.023) and to consume oxygen (P<0.032). The ability of neutrophils to generate superoxide is dependent upon the action of a functional NADPH oxidase complex which is composed of cytosolic (p40phox, p47phox, p67phox, Rac2) and membrane (gp91phox) proteins. Exposure of neutrophils to fumagillin inhibited the formation of the NADPH oxidase complex by blocking the translocation of p47phox from the cytosolic to the membrane fraction (P=0.02). In addition to the production of superoxide, neutrophils also undergo degranulation, which leads to the release of proteolytic enzymes that contribute to the microbicidal activity of the cell. Fumagillin-treated neutrophils showed reduced degranulation as evidenced by lower myeloperoxidase activity (P<0.019). Fumagillin-treated cells demonstrated reduced levels of F-actin, thus indicating that retarding the formation of F-actin may contribute to the inhibition of the structural rearrangements required in the activated neutrophil. This work indicates that fumagillin may contribute to reducing the local immune response by altering the activity of neutrophils and thus facilitate the continued persistence and growth of A. fumigatus in the host.
منابع مشابه
The Aspergillus fumigatus toxin fumagillin suppresses the immune response of Galleria mellonella larvae by inhibiting the action of haemocytes.
Larvae of Galleria mellonella are widely used to evaluate microbial virulence and to assess the in vivo efficacy of antimicrobial agents. The aim of this work was to examine the ability of an Aspergillus fumigatus toxin, fumagillin, to suppress the immune response of larvae. Administration of fumagillin to larvae increased their susceptibility to subsequent infection with A. fumigatus conidia (...
متن کاملDiffusible component from the spore surface of the fungus Aspergillus fumigatus which inhibits the macrophage oxidative burst is distinct from gliotoxin and other hyphal toxins.
BACKGROUND The fungus Aspergillus fumigatus, whose spores are present ubiquitously in the air, causes a range of diseases in the human lung. A small molecular weight (< 10 kD) heat stable toxin released from the spores of clinical and environmental isolates of A fumigatus within minutes of deposition in aqueous solution has previously been described. A key effect of the toxin was to inhibit the...
متن کاملThe Fumagillin Gene Cluster, an Example of Hundreds of Genes under veA Control in Aspergillus fumigatus
Aspergillus fumigatus is the causative agent of invasive aspergillosis, leading to infection-related mortality in immunocompromised patients. We previously showed that the conserved and unique-to-fungi veA gene affects different cell processes such as morphological development, gliotoxin biosynthesis and protease activity, suggesting a global regulatory effect on the genome of this medically re...
متن کاملImpact of Enzymes and Toxins Potentiality of Four Aspergillus Species to Cause Aspergillosis
Aspergillus species are the main causing agents of invasive apergillosis chest disease. Eighty isolates of Aspergillus species, A. flavus (20), A. fumigatus (15), A. niger (30) and A. terreus (15 isolates), previously isolated and identified from aspergillosis suspected patients at our lab in Assiut university hospitals, were assayed for their enzymes and toxins profile. The results revealed th...
متن کاملExposure of Aspergillus fumigatus to caspofungin results in the release, and de novo biosynthesis, of gliotoxin.
Caspofungin is a member of the echinocandin class of antifungal agents that inhibit the synthesis of β 1,3 glucan thus disrupting fungal cell wall structure and function. Exposure of the Aspergillus fumigatus cultures to caspofungin (0.01, 0.1 or 1.0 μg/ml) resulted in a reduction in cell growth, but the production of the epipolythiodioxopiperazine toxin, gliotoxin, was comparable, or greater, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of medical microbiology
دوره 59 Pt 6 شماره
صفحات -
تاریخ انتشار 2010